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Abstract 
 
This paper derives an analytic closed-form formula for the cumulative distribution 
function (cdf) of the composite error of the stochastic frontier analysis (SFA) model. 
Since the presence of a cdf is frequently encountered in the likelihood-based analysis 
with limited-dependent and qualitative variables as elegantly shown in the classic book of 
Maddala (1983), the proposed methodology is useful in the framework of the stochastic 
frontier analysis. We apply the formula to the maximum likelihood estimation of the SFA 
models with a censored dependent variable. The simulations show that the finite sample 
performance of the maximum likelihood estimator of the censored SFA model is very 
promising. A simple empirical example on the modeling of reservation wage in Taiwan is 
illustrated as a potential application of the censored SFA. 
 
 
Key words: Stochastic frontier analysis, cumulative distribution function, censored 

stochastic frontier model  
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1.  Introduction 

 
This paper derives an analytic closed-form formula for the cumulative distribution 

function (cdf) of the composite error in the stochastic frontier analysis (SFA) introduced 

by Aigner et al. (1977).  The SFA regressions take the form,  ;y f x v u   , where 

the two-sided random error v represents statistical noise and u  0 reflects managerial 

inefficiency. The composite error v u    is the major feature of the SFA model and 

plays an important role on the associated analysis. The standard maximum likelihood 

estimation of the SFA requires the evaluation of the probability density function (pdf) of 

the composite error  . The computation of the pdf of   is relatively easy and routine. 

Nevertheless, there is no simple way to approximate the cumulative distribution function  

of the composite error, even though the cdf is frequently encountered in the studies with 

limited-dependent and qualitative variables as clearly demonstrated in Maddala (1983).  

Many studies, for instance, Hofler and Murphy (1992, 1994), and Polachek and Robst 

(1998), have applied the SFA framework to estimate reservation wages of workers and 

the effects of labor market imperfection information on wages. Had the wage regression 

 ;y f x     were censored with the minimum wage restriction, the model would 

correspond to either the censored or the truncated SFA regression and the maximum 

likelihood estimation would then require the computation of the cdf of the composite 

error. Recently, Park and Lohr (2007) propose a deterministic frontier model to evaluate 

the performance extension service providers in the US land grant universities using order 

response data on the dependent variable y. Had the model were SFA, the maximum 

likelihood estimation of the binary or ordinal stochastic frontier regression would again 

require the computation of the cdf of the composite error. The current paper fills this gap 

in the literature by proposing an analytic closed-form formula for the cdf of the SFA 

composite error.  

Apparently, the applicability of the proposed approximation method is far reaching. 

Recently, Amsler et al. (2011) consider the stochastic frontier models in the setting where 

there is correlated inefficiency over time; and Lai and Huang (2011) consider the 

multiple stochastic frontier models with correlated composite errors in the setting of 

seemingly unrelated regressions.  In these settings, they recognize that current methods of 
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modeling dependence are either restrictive or computationally infeasible. They thus 

suggest using a copula to the composite errors of the SFA model in order to replace the 

task of multi-dimensional integration of the traditional methods with a much easier one-

dimensional integral. Interestingly, this one-dimensional integral happens to be the cdf of 

the composite error which serves as an argument of the copula function. Indeed, Amsler 

et al. (2011) and Lai and Huang (2011) recognize that the approximation method 

proposed in this paper can speed up the evaluations of their copula-based approach. 

The remaining parts of this paper are arranged as follows:  In section 2 we present a  

closed-form formula for computing the cdf of the composite error. The accuracy of the 

proposed formula is examined via an empirical distribution of ten million random 

drawings of the composite error.   In section 3, we apply the formula to derive the 

likelihood function of the SFA with a censored dependent variable to illustrate the power 

of the proposed formula. Section 4 provides a simple application of the proposed closed-

form computation of the cdf of the composite error in the estimate of the reservation 

wages of employed workers in Taiwan where the legislated minimum wage severed as 

the censored point. Section 5 gives a summary and conclusions. 

 
2.  Analytic Close-Form Formula for the CDF of a Composite Error of SFA 

 
Consider a standard linear stochastic frontier model, 

  T ,i iiy x     i = 1, 2, …, n (1) 

where iy  and i  are the ith observation on the dependent variable and the random error, 

respectively; T
ix  is a 1k vector of the ith observation on the k regressors; and  is a k1 

vector of unknown parameters to be estimated.   The composite error i  is specified as: 

, i i iv u  (2) 

where the random errors iv  are independently and identically distributed (iid) as 

2(0, )vN  , and the random errors iu  are the absolute values of the variables that are iid as 

2(0, )uN  .   All iv 's and iu 's are independent of each other, and are also independent of 

ix .   We follow the reparameterization of Aigner et al. (1977) in setting 
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2 2 2 u v   , and  u

v





 .   (3) 

The log likelihood function of the model defined in (1)-(3) is shown to be 

  2
0 2

1 1

2 1
ln ln ln

2 2

n n
i i

i i

n
L n

  
   

                 
, (4) 

where T
i i iy x   , and  is the cdf of N(0,1).   The maximum likelihood estimation is 

obtained by the maximization of (4) with respect to the parameter  T , ,   . 

As clearly demonstrated by Maddala (1983), the cdf is frequently encountered in the 

context of limited-dependent and qualitative variables, including the censored regression 

model, the self-selectivity model of Roy (1951), and the SFA with sample selection of 

Greene (2010). Without an accurate cdf, the resulting analysis will be incorrect, or even 

impossible. 

To clarify the basic idea of this paper, we employ the case of censored regression as 

the workhorse. The standard censored (Tobit) model (Tobin, 1958), i.e., the dependent 

variable is censored, has been wildly employed in the literature.  The Tobit model takes 

the general form,  ; y f X v , where the noise v is usually assumed to be normally 

distributed. Under this set-up, the maximum likelihood estimation of the Tobit model can 

be easily implemented with many computer packages.   When the dependent variable y in 

the SFA regression contains a considerable number of censored observations, then the 

stochastic frontier regression is of the censored type rather than the standard (uncensored) 

SFA model.    

Without loss of generality, we assume the point of censoring is at 0 throughout this 

paper, i.e.,  

T*

* *

*

,         =1, 2, ..., ;        

,                    if y  > 0;            

0,                       if y 0.            

i ii

i i i

i i

y x i n

y y

y

   



  

 (5) 

where i i iv u   .  It is inappropriate to estimate the parameters of model (5) via the log 

likelihood function 0L  in (4) because of the presence of the censored dependent variable.  

Thus, 0L  is called the standard (uncensored) SFA log likelihood function.   As in 
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Amemiya (1985), the censored SFA log likelihood function for n independent 

observations of model (5) is: 

     T
1

0 0
ln ln

i i

i i
y y

L f F x 
 

    , (6) 

where (.)f  and  .F  are the density and distribution function of the composite error 

i i iv u   , respectively.   The first summation is over the observations for which 0iy  

and the second summation is over the observations for which 0iy . 

From the estimation point of view, the uncensored part in (6) is easy to compute 

because the density ( )if   is well-known, 

  2 i
i if

   
  

         
, (7) 

where (.)  denotes the density function of N(0,1).   However, the difficulty in the 

maximization of (6) is in computing the censored part, 

   
T

T ix
iF x f d


  




   , for 0iy  . (8) 

Nevertheless, there exists no analytic method to approximate the cdf in (8).  

Note that the above distribution function  .F can be expressed as: 

   2
F Q I Q


 , (9) 

where 

      
Q a

I Q d b d

     

 

   
    (10) 

and a



 , 
1

b


 , T
iQ x   . In this paper, we derive an approximated formula 

 appI Q  for  I Q  in (10).   However, we note here the error function ( )erf z  is defined 

as: 

   2 2

0 0

2
2

z z
terf z e dt t dt


   .  (11) 
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     Under (Q, a, b)  finite R, a  0, and b > 0,  I Q  in (10) can be approximated by 

 appI Q : 

     

 

2 2
1

2 2
2

2 2 2  ( )
1 21 1  

4 4 2 2 2 24 22 2

 
12

2 2

   

                 

a c Q b a c sign Qa c
erfapp b a c b a c b a c

b Q
erf

sign Q

b

I Q exp

,

      
      

  

 
   





 

where 1 1.09500814703333 c  and 2 0.75651138383854c   . The derivation of appI  is 

given in the appendix. Given appI , the cdf ( )F Q  in (9) can then be approximated by: 

   2
app appF Q I Q


. (13) 

Basically, the proposed formula appI  involves the error function ( )erf z , which can 

easily be computed with the standard statistical package.   Accordingly, the computation 

of appF  is extremely straightforward. 

Mathematically, the role of the two constants, 1c  and 2c  is to ensure that the error 

function ( )erf z  can be well approximated by another function, 2
1 2( ) 1   c z c zg z e ,  for 

0z .   The choice of 1c  and 2c  is to make the two functions, ( )erf z  and ( )g z , as close 

to each other as possible.   One possible method is to use the first-order Taylor expansion 

around z = 1 to obtain the values of 1c  and 2c .   An alternative approach, as adopted in 

this paper, is to use the nonlinear least squares method to estimate 1c  and 2c based on 500 

equally spaced points within the interval  0,5 .   The interval is chosen because 

 0 0erf   is the lower limit of the error function, and 8(5) 1 0.15 10erf     is very 

close to the upper limit,   1erf   .   The estimated 1c  and 2c  are both negative. This 

choice of interval and function ( )g z  implies that (0) 0g , and 10(5) 1 0.3 10  g , 

which is approximately 1.   Moreover, both ( )g z  and ( )erf z are monotonically 

increasing functions.   Thus, the error function ( )erf z  is well approximated by ( )g z  for z 

(12) 
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 0. Indeed, we find the maximum difference between ( )erf z  and ( )g z  is 0.002205 for 

the argument being 0,0.0001,…,3.  

Table 1 demonstrates that    2
app appF Q I Q


 delivers a very accurate 

approximation to  F Q  which cannot be exactly known, but can be estimated by the 

Accept-Reject algorithm based on a large number of independent draws of  .   Ten 

million random drawings of   are observed and the cumulative distribution  F Q  is 

estimated from the empirical distribution of  Q .   Indeed, for various choices of Q and 

parameter sets of u  and v , the absolute difference between  appF Q  and the empirical 

estimate of  F Q  based on the Accept-Reject algorithm is less than 0.0003 in probability.   

More importantly, the absolute difference   ( )appF Q F Q  exhibits no apparent pattern 

either at the truncation point Q, or the values of parameters u  and v .  The good 

approximation of  appF Q  to  F Q  also explains the excellent finite sample 

performance of the MLE of the censored SFA under various model configurations 

considered in the next section.  

[insert Table 1 here] 

 

3.  Maximum Likelihood Estimation of Censored Stochastic Frontier Regressions 

 

In this section we consider the finite sample performance of the MLE based on the 

standard SFA likelihood function, 0L , and the MLE based on the censored SFA 

likelihood function, 1L , when the data-generating processes (DGP) are model (5).  The 

focal point is on the effects of the formula in (12) on the likelihood-based estimation.  

Following Olson et al. (1980), we consider a set of experiments with a simple model: 

*
0 1

l l
ii iy x     , i = 1, 2, …, n, l = 1, 2, …, 500, (14) 
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where l denotes the l-th replication of the data, and the regressors x are drawn from 

N(0,1).   The parameters considered in the Monte Carlo experiments are1: 

 T0 1, , ,u v     .  

The maximization of the standard SFA likelihood function 0L  in (4) is well 

established.   For the censored SFA likelihood function 1L  in (6), we take the derivatives 

of the approximated formula with respect to the parameter   , i.e., 

     T
1

0 0

lnln

i i

app ii

y y

F xfL 
   

 
  

  
. (15) 

All the programs are written in GAUSS.   The optimization algorithm used to implement 

the MLE is the quasi-Newton algorithm of Broyden, Fletcher, Goldfarb, and Shanno 

(BFGS) contained in the GAUSS MAXLIK library2.  The maximum number of iterations 

for each replication is 200.   In order to create a more realistic scenario in simulation, the 

initial value for the MLE procedure is set at the true parameter value plus a random 

number generated from N(0,1)3. Furthermore, to provide a fair comparison between 

0L and 1L  estimators, we record the first 500 replications with normal convergence for 

numerical analysis. 

The experimental design intends to show that a significant bias exists in MLE if the 

presence of censored dependent variable is not taken into account.   Intuitively, the more 

observations are censored, the more weight the censored part of the likelihood function L1 

in (6) carries in the maximization.  Consequently, a larger bias in MLE is expected based 

on the misspecified standard SFA model. In particular, consider the probability limit of 

the derivative of 0L  with respect to  , 

     
1 0

ln ln01 1 1 1    
0 0i i

f fL i iPlim m Plim m Plim
n n n

y y

 
  

 
  

   
   

                                                 
1  In the experiments, we estimate   with the following transformation function: 

   T
0 1, , ,u v         , where     T0 1, , ln , lnu v      are the parameters actually estimated 

when conducting the MLE of the censored and uncensored SFA.  
2  The GAUSS program for the censored SFA is available upon request from the authors. 
3  More precisely, the initial value of~ is set to be 1

0 ( ) (0,1)N      .  
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where m is the probability and 0n  is the observations that, 0yi   respectively,  and 

1 0n n n  .   If the true model is of the censored SFA, we have 

 
1

ln1 0
0i

f iPlim
n

y








 , but 

 
0

ln1  0
0i

f iPlim
n

y








 .  Thus, the degree of bias in 

the standard SFA depends on the probability m that 0yi  . 
To examine the sensitivity of the MLE with respect to censored observations, various 

percentages of the latent dependent variable ( *
iy ) falling below zero are assumed in the 

Monte Carlo experiments.   To this end, the slope of the censored SFA in (14) is assumed 

to be either zero, 1 0  , or one, 1 1  , for all experiments, and the intercept 0  is set to 

an appropriate value to ensure the probability that *
iy  falling below zero is at a specified 

m .   More specifically, in an experiment with a pre-assigned m , the intercept can be set 

as  1
0

 F m , where  1 .F  is the inverse distribution function of   , and  the 

parameters considered for the simulations are: 

    TT 1
0 1, , , ,0, ,u v u vF m         . (16) 

All Monte Carlo experiments are conducted with 500 replications.   Some easily 

distinguished patterns of bias in the MLE emerge in Tables 2-3.   The results clearly 

show that in almost all cases, the bias resulting from the standard MLE ( 0L ) of the 

parameters is much larger than the bias resulting from the censored MLE ( 1L ), and as 

expected, the bias from 0L  seems to increase with the degree of censoring m as we can 

clearly see from the changing pattern of the estimated u and v . Furthermore, the bias 

from the standard MLE ( 0L ) of the standard SFA is considerable relatively to its true 

value, especially in 0 , u , and v .   On the other hand, it appears that the finite sample 

performance of the censored MLE based on the proposed approximated formula appF  in 

(13) is very promising, as the associated bias is negligible relative to its true value. This 

outcome is direct evidence of the effectiveness of applying appF  in the maximum 

likelihood estimation of censored stochastic frontier models. 

From our experience in conducting Monte Carlo experiments, the MLE of the 

standard SFA regression often fails to obtain “normal” convergence in computation when 
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the probability of censoring or the number of censoring observations is, for example, 

larger than 8%.   The failure is due to either the number of iterations in maximization 

beyond a reasonable limit or, in most cases, the iterative estimates of u  (or v ) tending 

to approach to the boundary of the parameter space, i.e., 0.   On the other hand, however, 

the failure of normal convergence seldom occurs in the maximization of  1L  when the 

sample size is greater than 100.  

[insert Tables 2-3 here] 

In Tables 4 and 5 we illustrate the corresponding mean squared errors (MSE) from 

the design in Table 2 and Table 3. The MSE of censored SFA always decreases with 

increasing sample size, revealing the censored MLE based on our proposed analytic 

formula in (13) possesses a well-defined asymptotic behavior. On the other hand, we 

cannot see such a pattern from the standard SFA. In particular, when 0 0.53   0.06m  , 

MSE is 0.0781 as the sample size is 400, and  the value changes to be 0.0824 when the 

sample size increases to be 800.  

[insert Tables 4-5 here] 

To further demonstrate the effectiveness of applying appF  in the MLE of the censored 

SFA estimation, we conduct more detailed experiments with various combinations of 

parameters  T0 1, , ,u v     , and sample size.  The results in Tables 6-8 show the 

MSE of the MLE of  .   For all 27 combinations of   considered in Tables 6-8, the MSE 

of censored SFA always decreases with increasing sample size.   The results again assure 

the promising performance of the proposed appF  approximation formula. This finding is 

important, but not surprising in that the MLE of censored SFA takes into account the 

presence of censored dependent variable in estimation.   The simulations enhance our 

understanding and confidence in the use of appF  in the MLE of censored SFA. 

[insert Tables 6-8 here] 
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4.  An Empirical Example 

 

According to search theory, workers form “reservation” wages such that the job offer 

paying a wage higher than the reservation wage is accepted and the job search is 

terminated.  Hofler and Murphy (1992, 1994) model the job search and wage 

determination process in a stochastic frontier framework, 

r T
i i i i i iw w u x v u      (17) 

where ix ’s are the reservation wage ( r
iw ) determinants with coefficients  .  The two-

sided random error iv represents statistical noise and the non-negative 0iu   reflects the 

degree by which the worker’s observed wage exceeds the reservation wage.  With data on 

employed workers, the estimation of the reservation wage and the wage premium (the 

spread between observed and reservation wages) is a straightforward application of the 

standard stochastic frontier analysis.  Econometrically, however, the existence of the 

regulation of minimum wage complicates the above analysis in that 

*

* * min

min * min,

T
i i ii

i i i

i i

w x v +u                                     

w w ,                  if w  > w             

w w               if w w               

  



    

(18) 

where minw  denotes the minimum wage and serves as the censoring points for the 

observed wage. Thus, the reservation wage regression with censored minimum wage 

restriction corresponds to the censored SFA regression. The estimation of reservation 

wage might then be biased if we do not take the presence of minimum wage regulation 

into account. The proposed method of this paper is capable of dealing this issue. 

The data used in the empirical example reported below were drawn from the Human 

Resource Survey conducted in 2006 by the government statistical office of Taiwan.  The 

survey employed a stratified two- stage random sampling framework on the general 

population with ages over 15 excluding those in army service or in prison.  To exemplify 

significance of minimum wage in the modeling of reservation wage, the survey is further 

screened to include only the full-time workers, excluding self-employed or family 

workers, in the eastern region of Taiwan.  The above screening of the survey data yields a 

total of 1128 sample workers.  The wage variable ( w ) is the regular 42-week-hours 
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monthly wage earning excluding overtime payment.  The minimum wage ( minw ) in 2006 

was NT$15,840, set by the government of Taiwan.  The sample shows a total of 194 or 

17% of workers working at the minimum wage level. 

The dependent variable is the natural logarithm of the worker’s monthly wage.  The 

explanatory variables (x) used in estimating the reservation wage are a set of socio-

demographic factors.  More specifically, the explanatory variables are: 

Gov =1 if work for government and Gov = 0, otherwise.  Government employees on 

average are better paid than the private counterpart. 

Gender = 1 if female and Gender = 0, otherwise.  Female is usually paid less due to 

sex discrimination in job market. 

Marry = 1 if married or cohabitation and Marry =0, otherwise. 

Edu = the educational attainment measured in year of schooling divided by 10.    

Higher education attainment would generate better wage. 

Age = worker’s age divided by 40 as a measure of work experience.  The work 

experience is postulated to have a positive impact on the reservation wage at a 

decreasing rate.  Therefore, the squared (Age) term is included as an 

additional explanatory variable. 

Farming = 1 if works in farming industry and Farming = 0, otherwise. Workers in 

farming are in general paid less than those in other industries. 

[insert Table 9 here] 

Table 9 shows, in the logarithmic form, both estimated reservation wage equations 

based on the proposed censored SFA specification and the standard (uncensored) SFA 

specification without the consideration of the minimum wage restriction.  In general, the 

overall fitting for both censored SFA and standard SFA models are reasonably well that 

all coefficient estimates are statistically significant at the 1% level.  However, the 

censored coefficient estimates, except the coefficient of Marry, are larger in absolute 

value than the standard SFA estimates. Interestingly, this leads to the empirical finding 

that the censored SFA predicts higher (lower) reservation wage than the prediction from 

the standard SFA model when the predicted reservation wage is over (under) the 

minimum wage of  $15,840 NT dollars  as shown in Figure 1. Furthermore, by the 
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simulation results in Table 2 and Table 3, under the presence of censored observations, 

we find a upward bias in the estimate ˆu , and a downward bias in ˆv  if we employ the 

standard SFA specification. The results in Table 9 reflect these observations in that the 

estimate ˆu  is larger from the standard SFA than that from the censored SFA, and the 

converse is true for ˆv .        

 

5.  Summary and Conclusions 

 

We propose an easy-to-implement and accurate closed-form formula for computing 

the cumulative distribution function of the composite error of the SFA model. The Monte 

Carlo experiments show that the proposed method is powerful to deal with the maximum 

likelihood estimation of the censored SFA models. Moreover, the failure of normal 

convergence almost never occurs in the maximization of the correctly specified censored 

SFA likelihood function based on the proposed formula, indicating the computational 

stability of our method.  Since the presence of the cdf is widely spread in the studies of 

limited-dependent and qualitative variables, we contemplate that our formula is a useful 

instrument for the stochastic frontier analysis with these data. A simple empirical 

example on modeling of reservation wage determination with minimum wage restriction 

is illustrated.  The reservation wage model corresponds to the proposed censored SFA 

model and, as expected, the empirical findings using a Taiwanese survey data are 

consistent to the theoretical prediction on the bias of coefficient estimates, particularly in 

the variance estimates of the error terms.    
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Appendix 

 
This appendix shows the derivation of the approximated cumulative distribution 

function appF .   Since 0a



  ,  we divide the derivation into two parts: for 

 0, 0Q a   and  0, 0Q a  .   Furthermore, for ease of exposition, two equations 

from Abramowitz and Stegun (1970, equations (7.11) and (7.4.32)) are given: 

   2 2

0 0

2
2

z z
terf z e dt t dt


   , 

  22 2 1
   0

2

m kn
kkx mx n m

e dx e erf k x C, k ,
k k

     
    

   

where C denotes a finite constant. 

Given that  , ,Q a b  finite R, 0b ,    erf x erf x   , and define 2 /v a  , we 

have: 

   
    

         

2
2

0

2

0
2

0

2  2

2      1  2
2

2 2      1  2 1  2 ,
2 2

a Q v

a

a Q

a Q

bI d v dv
a a

berf v v dv
a a

b berf v v dv erf v v dv
a a a a

   



 

  





 
  

 

 

   

 



 

 

 Note that  erf z  can be well approximated by a function, 2
1 2( ) 1 c x c xg x e    for 0x  , 

where 1c  and 2c  are chosen to ensure that  g x  is as close to  erf x  as possible. The 

choice of 1c  and 2c   is discussed in Section 2. 

With the preceding results of  0aI Q , we then have 

           0
2

0, 0
0

2 21  2 1  2
2 2

a Q

a Q
b bI Q erf v v dv erf v v dv

a a a a
   

      

         2
0 0

2 21  2 1  2
2 2

a Qb berf v v dv erf v v dv
a a a a

 


      
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 

2 2 2 2
2 22 21 2
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2 2
22 21 2

0

2 21 1  
2 2 2

2 1     
2 2

av b v bQ
c v c v a a

a v bQ
c v c v a

e e dv e dv
a a

e e dv
a

 



  



 



 


 

  
      

2 2 2
2

2 2 2
2

2
1

0

2 22 2
1

0 0

1
2

1 1   .
2

 



  

    



 

b a c
a

b aQ Q b a ca
b a

exp v c v dv
a

exp v d v exp v c v dv
a a



 

 

 

When we use (7.4.32) of Abramowitz and Stegun (1970),  0, 0a QI    can be approximated 

by: 

     2 2
1

2 2
2

2 2 2  
1 21 1  0 0 4 4 2 2 2 24 22 2

 1
2 2

  

                       

a c Q b a ca c
erfa ,Q b a c b a c b a c

b Q
erf

b

I Q exp

.

      
        

  

 
 
 





 

Likewise, we can derive the approximation for 0, 0a QI   : 

     2 2
1

2 2
2

2 22  
1 21 1  0 0 4 4 2 2 2 24 22 2

  
a c Q b a ca c

erfa ,Q b a c b a c b a c
I Q exp

      
        

  

 . 

Combining the preceding results, we prove the result in (12).  
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Table 1.  Accuracy of ( )appF Q  in Computing ( )F Q at Various Q, u , and   

1u  Q 

Method 3.0 2.0 1.0 0.0 1.0 2.0 3.0 

 
 

 
1.50  0.6667v   

 
100 ( ) appF Q  0.000060 0.022664 1.488730 18.740960 60.943449 90.408314 98.743208

100 ( )F Q  0.000060 0.019500 1.477160 18.725950 60.914390 90.406290 98.746360

 100 AbsD  0.000000 0.003164 0.011570 0.015010 0.029059 0.002024 0.003152

 
 

 
1.25  0.8000v   

 
100 ( ) appF Q  0.001620 0.128156 2.957624 21.493701 59.469658 88.293175 98.086663

100 ( )F Q  0.001390 0.122430 2.954490 21.481860 59.462650 88.285310 98.088210

 100 AbsD  0.000230 0.005726 0.003134 0.011841 0.007008 0.007865 0.001547

 
 

 
0.85  1.1765v   

 
100 ( ) appF Q  0.149700 1.499332 8.425067 27.601621 56.692885 81.965878 94.941287

100 ( )F Q  0.147350 1.499210 8.428980 27.579250 56.708140 81.971100 94.934540

 100 AbsD  0.002350 0.000122 0.003913 0.022371 0.015255 0.005222 0.006747

Note:  ( )appF Q  is computed based on  2
appI Q


 in (13) and ( )F Q is computed from the 

Accept-Reject algorithm based on 10 million independent draws of the distribution ( )f   in (7).  

AbsD denotes the absolute difference  ( ) ( )appF Q F Q  .   
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Table 2.  Bias of the Censored (L1) and Standard (L0) MLE: 

1
0 1( ),  0,  0.6667,  1v uF m         

 0  1  u  v  

L L0 L1 L0 L1 L0 L1 L0 L1 

n 0 0.91   0.02m   

100 0.0139 0.1240 -0.0025 -0.0019 -0.0227 -0.1674 -0.0727 0.0082 

200 -0.0360 0.0726 -0.0010 -0.0048 0.0455 -0.0900 -0.0724 0.0000 

400 -0.0582 0.0314 -0.0009 -0.0003 0.0754 -0.0341 -0.0719 -0.0019 

800 -0.0661 0.0143 0.0020 -0.0001 0.0874 -0.0144 -0.0730 -0.0015 

n 0 0.68   0.04m   

100 -0.0674 0.1130 0.0010 -0.0024 0.0937 -0.1456 -0.1575 -0.0085 

200 -0.1179 0.0790 -0.0008 -0.0051 0.1532 -0.0949 -0.1602 -0.0012 

400 -0.1341 0.0405 -0.0009 -0.0001 0.1747 -0.0457 -0.1576 0.0009 

800 -0.1363 0.0180 0.0022 -0.0001 0.1802 -0.0191 -0.1554 -0.0005 

n 0 0.53   0.06m   

100 -0.0936 0.1214 -0.0068 -0.0030 0.1384 -0.1538 -0.2252 -0.0073 

200 -0.1428 0.0919 -0.0055 -0.0047 0.2027 -0.1116 -0.2322 0.0028 

400 -0.1925 0.0407 -0.0019 0.0003 0.2558 -0.0462 -0.2515 0.0013 

800 -0.2094 0.0219 0.0013 0.0002 0.2744 -0.0243 -0.2582 0.0011 

n 0 0.41   0.08m   

100 -0.0508 0.1318 -0.0004 -0.0004 0.1286 -0.1660 -0.2550 -0.0050 

200 -0.1114 0.0984 -0.0012 -0.0043 0.2061 -0.1204 -0.2758 0.0070 

400 -0.1496 0.0500 0.0014 0.0005 0.2493 -0.0586 -0.2939 0.0060 

800 -0.1681 0.0245 0.0190 0.0004 0.3277 -0.0281 -0.3193 0.0029 

Note: All results are based on 500 replications.   The true parameters in simulation are: 

    TT 1
0 1, , , ,  0,  1,  0.6667u v F m        , where 0  is chosen to ensure the probability 

that the dependent variable latent *
iy  falls below zero at a specified m  under various 

configurations.  
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Table 3.  Bias of the Censored (L1) and Standard (L0) MLE: 

1
0 1( ),  1,  0.6667,  1v uF m         

 0  1  u  v  

L L0 L1 L0 L1 L0 L1 L0 L1 

n 0 0.91   0.02m   

100 -0.0114 0.0990 -0.1547 -0.0020 0.0536 -0.1258 -0.1622 -0.0201 

200 -0.0201 0.0698 -0.1270 -0.0061 0.0790 -0.0830 -0.1444 -0.0072 

400 -0.0060 0.0404 -0.1361 0.0003 0.0772 -0.0462 -0.1298 0.0019 

800 -0.0160 0.0189 -0.1268 0.0006 0.0916 -0.0210 -0.1300 0.0012 

n 0 0.68   0.04m   

100 -0.0360 0.1089 -0.2179 -0.0040 0.1087 -0.1377 -0.2235 -0.0177 

200 -0.0190 0.0757 -0.1804 -0.0065 0.1081 -0.0902 -0.1922 -0.0048 

400 0.0004 0.0470 -0.1870 0.0003 0.1019 -0.0546 -0.1738 0.0052 

800 -0.0100 0.0235 -0.1764 0.0005 0.1168 -0.0267 -0.1752 0.0025 

n 0 0.53   0.06m   

100 -0.0472 0.1298 -0.2735 -0.0023 0.1443 -0.1644 -0.2741 -0.0080 

200 -0.0127 0.0803 -0.2251 -0.0060 0.1255 -0.0964 -0.2291 -0.0026 

400 0.0082 0.0503 -0.2285 0.0002 0.1194 -0.0588 -0.2090 0.0055 

800 -0.0010 0.0279 -0.2171 0.0005 0.1332 -0.0324 -0.2103 0.0042 

n 0 0.41   0.08m   

100 -0.0427 0.1342 -0.3201 -0.0018 0.1617 -0.1701 -0.3141 -0.0078 

200 -0.0053 0.0895 -0.2686 -0.0057 0.1405 -0.1081 -0.2638 -0.0009 

400 0.0166 0.0535 -0.2680 0.0000 0.1346 -0.0627 -0.2422 0.0055 

800 0.0096 0.0274 -0.2557 -0.0002 0.1461 -0.0311 -0.2422 0.0030 

Note: All results are based on 500 replications.   The true parameters in simulation are: 

    TT 1
0 1, , , ,  0,  1,  0.6667u v F m        , where 0  is chosen to ensure the probability 

that the dependent variable latent *
iy  falls below zero at a specified m  under various 

configurations.  
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Table 4.  Mean Squared Errors (MSE) of the Censored (L1) and Standard (L0) MLE: 

1
0 1( ),  0,  0.6667,  1v uF m         

 0  1  u  v  

L L0 L1 L0 L1 L0 L1 L0 L1 

n 0 0.91   0.02m   

100 0.0966 0.1523 0.0109 0.0114 0.1410 0.2305 0.0269 0.0243 

200 0.0405 0.0834 0.0045 0.0049 0.0593 0.1270 0.0151 0.0135 

400 0.0169 0.0341 0.0020 0.0021 0.0248 0.0532 0.0096 0.0069 

800 0.0105 0.0124 0.0010 0.0011 0.0163 0.0182 0.0075 0.0035 

n 0 0.68   0.04m   

100 0.0852 0.1487 0.0122 0.0120 0.1409 0.2269 0.0497 0.0296 

200 0.0459 0.0873 0.0041 0.0049 0.0661 0.1346 0.0371 0.0156 

400 0.0309 0.0414 0.0018 0.0021 0.0468 0.0654 0.0300 0.0077 

800 0.0244 0.0155 0.0009 0.0011 0.0399 0.0232 0.0264 0.0040 

n 0 0.53   0.06m   

100 0.0653 0.1507 0.0099 0.0115 0.0978 0.2298 0.0740 0.0313 

200 0.0432 0.0971 0.0039 0.0049 0.0714 0.1517 0.0652 0.0174 

400 0.0473 0.0409 0.0017 0.0021 0.0781 0.0648 0.0690 0.0081 

800 0.0500 0.0183 0.0008 0.0011 0.0824 0.0278 0.0700 0.0046 

n 0 0.41   0.08m   

100 0.0431 0.1572 0.0094 0.0119 0.0759 0.2409 0.0858 0.0340 

200 0.0278 0.0995 0.0059 0.0050 0.0811 0.1557 0.0855 0.0184 

400 0.0337 0.0465 0.0034 0.0022 0.0960 0.0741 0.0923 0.0091 

800 0.0432 0.0198 0.0207 0.0011 0.2547 0.0303 0.1067 0.0052 

Note: All results are based on 500 replications.   The true parameters in simulation are: 

    TT 1
0 1, , , ,  0,  1,  0.6667u v F m        , where 0  is chosen to ensure the probability 

that the dependent variable latent *
iy  falls below zero at a specified m  under various 

configurations.  
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Table 5.  Mean Squared Errors (MSE) of the Censored (L1) and Standard (L0) MLE: 

1
0 1( ),  1,  0.6667,  1v uF m         

 0  1  u  v  

L L0 L1 L0 L1 L0 L1 L0 L1 

n 0 0.91   0.02m   

100 0.0771 0.1390 0.0328 0.0137 0.1134 0.2115 0.0508 0.0317 

200 0.0276 0.0826 0.0201 0.0056 0.0471 0.1256 0.0307 0.0172 

400 0.0105 0.0393 0.0202 0.0025 0.0220 0.0623 0.0217 0.0085 

800 0.0053 0.0155 0.0169 0.0013 0.0158 0.0228 0.0193 0.0043 

n 0 0.68   0.04m   

100 0.0613 0.1429 0.0574 0.0140 0.0945 0.2170 0.0714 0.0343 

200 0.0212 0.0844 0.0368 0.0059 0.0424 0.1295 0.0457 0.0180 

400 0.0088 0.0426 0.0368 0.0026 0.0238 0.0676 0.0348 0.0091 

800 0.0043 0.0186 0.0320 0.0013 0.0199 0.0281 0.0329 0.0048 

n 0 0.53   0.06m   

100 0.0529 0.1517 0.0874 0.0139 0.0879 0.2360 0.0952 0.0348 

200 0.0182 0.0862 0.0555 0.0060 0.0419 0.1330 0.0607 0.0192 

400 0.0079 0.0461 0.0542 0.0027 0.0261 0.0730 0.0480 0.0099 

800 0.0037 0.0218 0.0481 0.0014 0.0232 0.0334 0.0464 0.0054 

n 0 0.41   0.08m   

100 0.0408 0.1556 0.1168 0.0147 0.0776 0.2401 0.1171 0.0374 

200 0.0158 0.0933 0.0779 0.0063 0.0422 0.1437 0.0776 0.0205 

400 0.0074 0.0491 0.0741 0.0028 0.0288 0.0780 0.0628 0.0107 

800 0.0034 0.0213 0.0664 0.0014 0.0263 0.0327 0.0607 0.0056 

Note: All results are based on 500 replications.   The true parameters in simulation are: 

    TT 1
0 1, , , ,  0,  1,  0.6667u v F m        , where 0  is chosen to ensure the probability 

that the dependent variable latent *
iy  falls below zero at a specified m  under various 

configurations.  
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Table 6.  Mean Squared Errors (MSE) of the Censored (L1) MLE: 1
0 1( ),  0,  1.0uF m       

 0  1  u  v  
  1.50 0.6667v     

n m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06

200 0.0834 0.0873 0.0971 0.0049 0.0049 0.0049 0.1270 0.1346 0.1517 0.0135 0.0156 0.0174 

400 0.0341 0.0414 0.0409 0.0021 0.0021 0.0021 0.0532 0.0654 0.0648 0.0069 0.0077 0.0081 

800 0.0124 0.0155 0.0183 0.0011 0.0011 0.0011 0.0182 0.0232 0.0278 0.0035 0.0040 0.0046 

  1.25 0.80v    

n m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06

200 0.1331 0.1399 0.1424 0.0060 0.0061 0.0061 0.2122 0.2250 0.2321 0.0171 0.0194 0.0211 

400 0.0805 0.1028 0.1056 0.0027 0.0027 0.0027 0.1281 0.1678 0.1732 0.0108 0.0132 0.0143 

800 0.0368 0.0485 0.0543 0.0013 0.0013 0.0013 0.0588 0.0786 0.0876 0.0056 0.0070 0.0080 

  0.85 1.1765v    

n m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06

200 0.2617 0.2574 0.2635 0.0108 0.0109 0.0111 0.4119 0.4092 0.4204 0.0248 0.0276 0.0293 

400 0.2250 0.2295 0.2427 0.0048 0.0048 0.0048 0.3592 0.3698 0.3939 0.0170 0.0187 0.0202 

800 0.1852 0.1992 0.2146 0.0023 0.0023 0.0024 0.2929 0.3172 0.3424 0.0119 0.0135 0.0149 

Note: All results are based on 500 replications.   The true parameters in simulation are: 

    TT 1
0 1, , , ,  0,  1,  u v vF m        , where 0  is chosen to ensure the probability that the dependent variable 

latent *
iy  falls below zero at a specified m  under various configurations.
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Table 7.  Mean Squared Errors (MSE) of the Censored (L1) MLE: 1

0 1( ),  0,  1.2uF m       

 0  1  u  v  

  1.50 0.80v     

n m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06

200 0.1257 0.1353 0.1420 0.0068 0.0069 0.0069 0.2018 0.2192 0.2313 0.0211 0.0241 0.0261 

400 0.0462 0.0598 0.0782 0.0031 0.0031 0.0031 0.0741 0.0982 0.1293 0.0106 0.0130 0.0154 

800 0.0171 0.0223 0.0283 0.0016 0.0015 0.0015 0.0271 0.0356 0.0457 0.0051 0.0060 0.0070 

  1.25 0.96v    

n m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06

200 0.1915 0.1960 0.2051 0.0087 0.0088 0.0088 0.3052 0.3164 0.3342 0.0246 0.0277 0.0303 

400 0.1160 0.1499 0.1545 0.0039 0.0039 0.0039 0.1845 0.2444 0.2531 0.0155 0.0192 0.0208 

800 0.0525 0.0692 0.0804 0.0019 0.0019 0.0019 0.0841 0.1118 0.1299 0.0080 0.0101 0.0117 

  0.85 1.4118v    

n m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06

200 0.3729 0.3698 0.3762 0.0156 0.0157 0.0159 0.5852 0.5857 0.6001 0.0355 0.0397 0.0419 

400 0.3241 0.3267 0.3481 0.0069 0.0069 0.0069 0.5172 0.5261 0.5641 0.0245 0.0269 0.0291 

800 0.2673 0.2900 0.3056 0.0034 0.0034 0.0034 0.4227 0.4621 0.4866 0.0172 0.0197 0.0211 

Note: All results are based on 500 replications.   The true parameters in simulation are:     TT 1
0 1, , , ,  0,  1,  u v vF m        , 

where 0  is chosen to ensure the probability that the dependent variable latent *
iy  falls below zero at a specified m  under various 

configurations.  
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Table 8.  Mean Squared Errors (MSE) of the Censored (L1) MLE: 1

0 1( ),  0,  1.4uF m       

 0  1  u  v  

  1.50 0.9333v     

n m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06

200 0.1725 0.1822 0.1911 0.0093 0.0094 0.0094 0.2767 0.2955 0.3126 0.0288 0.0326 0.0355 

400 0.0620 0.0796 0.1066 0.0042 0.0042 0.0042 0.0997 0.1309 0.1759 0.0144 0.0175 0.0210 

800 0.0232 0.0302 0.0386 0.0021 0.0021 0.0021 0.0368 0.0481 0.0624 0.0069 0.0081 0.0096 

  1.25 1.12v    

n m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06

200 0.2614 0.2740 0.2776 0.0119 0.0120 0.0120 0.4167 0.4422 0.4522 0.0336 0.0380 0.0411 

400 0.1593 0.2099 0.2102 0.0053 0.0053 0.0053 0.2536 0.3420 0.3445 0.0212 0.0265 0.0283 

800 0.0715 0.0923 0.1094 0.0026 0.0026 0.0026 0.1145 0.1490 0.1765 0.0109 0.0136 0.0160 

  0.85 1.6471v    

n m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06 m=0.02 m=0.04 m=0.06

200 0.5078 0.5033 0.5149 0.0212 0.0214 0.0217 0.7978 0.7980 0.8201 0.0484 0.0540 0.0572 

400 0.4412 0.4483 0.4751 0.0093 0.0093 0.0094 0.7041 0.7221 0.7701 0.0333 0.0368 0.0399 

800 0.3639 0.3900 0.4180 0.0046 0.0046 0.0046 0.5754 0.6220 0.6647 0.0234 0.0266 0.0289 

Note: All results are based on 500 replications.   The true parameters in simulation are:     TT 1
0 1, , , ,  0,  1,  u v vF m        , 

where 0  is chosen to ensure the probability that the dependent variable latent *
iy  falls below zero at a specified m  under various 

configurations.
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Table 9. Censored (L1) and Standard (L0) MLE of the Reservation Wages Regressions 

 

Variable Censored (L1) MLE Standard (L0) MLE 

   

Gov 0.3505 (0.0282) 0.3316 (0.0240) 

Gender 0.2846 (0.0221) 0.2275 (0.0180) 

Marry 0.0970 (0.0300) 0.1086 (0.0251) 

Edu 0.5931 (0.0448) 0.4773 (0.0382) 

Farming 0.1850 (0.0483) 0.1117 (0.0377) 

Age 1.9093 (0.2887) 1.2933 (0.2252) 

Age2 0.7823 (0.1396) 0.5207 (0.1084) 

Constant 8.1437 (0.1474) 8.5635 (0.1135) 

u  0.2961 (0.0428) 0.3631 (0.0244) 

v  0.2979 (0.0175) 0.2125 (0.0128) 

 

Note: The number in parenthesis denotes the standard error.
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Figure 1: Predictions of Reservation Wages 

 

 
Note:  FITOLD is the predicted reservation wage from the standard SFA model, while 

FITNEW is the predicted reservation wage from the censored SFA approach.  


